[ Pobierz całość w formacie PDF ]

Fullerene nitro functional groups were found to be some-
carbon cage and it reacts very easily with radical ions. It is not
what thermally unstable in solution or on SiO2 which
difficult for energetic materials chemists to get NO2 radicals.
prohibits the direct purification and separation of polyni-
Experimental conditions were set up under inert atmosphere
trated isomers under prolonged chromatographic conditions.
to obtain a higher yield of polynitrofullerene which is an
Each tetranitro[60]fullerene isomer comprising 56 conju-
excellent research field.
gated olefinic carbons should display at least 28 or 56
aromatic carbon peaks if the compound exhibits either a
twofold or no structural symmetry. However, as the number
4. References
of regioisomers increases the total number of aromatic
carbon peaks increases rapidly, which is an isomers
(1) W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R.
mixture and often results in a broad band of carbons centered
Huffman, Nature, 347, 354 (1990).
roughly at d 145. The first fullerene derivative to be made was
(2) W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R.
C60H36ð25Þ but paradoxically its structure has remained
Huffman, Chem. Phys. Lett., 170, 167 (1990).
unresolved. Just in theoretical works the structures of four (3) C. Siedschlag, H. Luftmann, C. Wolff, and J. Mattay, Tetra-
hedron, 53, 3587 (1997).
C60H36 isomers with the symmetry T, Th, D3d and S6 were
(4) F. Diederich, L. Isaacs, and D. Philp, Chemical Society Reviews
considered. The structure with T symmetry contains four
243 (1994).
isolated benzenoid rings located in the tetrahedral positions
(5) F. Diederich and C. Thilgen, Science, 271, 685 (1996).
(6) N. X. Wang, J. S. Li, and G. Ji, Propellants, Explosives, Pyro-
on the surface of the closed skeleton of the molecule. The
technics, 21, 317 (1996).
structure of the Th symmetry contains 12 isolated double
(7) L. Y. Chiang, J. B. Bhonsle, L. Y. Wang, S. F. Shu, T. M. Chang,
bonds in five-membered rings. Fullerene hydrides with the
and J. R. Hwu, Tetrahedron, 52, 4963 (1996).
structures of the D3d and S6 symmetry have one benzenoid
(8) F. Cataldo, Fullerene Sci. Tech., 5, 257 (1997).
(9) S. Roy and S. Sakar, J. Chem. Soc., Chem. Commun., 275 (1994).
ring at each pole of the molecule and isolated double bonds
(10) L. Y. Chiang, R. B. Upasani, and J. W. Swirczewski, J. Am.
along and parallel (D3d) as well as perpendicular (S6) to the
Chem. Soc., 114, 154 (1992).
equator of the molecule. According to the calculations, the
(11) A. Hamwi and V. Marchand, Fullerene Sci. Tech., 4, 835 (1996).
C60H36 structure with T symmetry is the most stable one (see (12) K. Jones, in: C. Bailar, Jr. (ed.),   Comprehensive Inorganic
Chemistry  , Vol. 2, Pergamon Press, Oxford, 1973, p. 340.
Refs. 26  28). If we obtain C60(NO2)36, the same problem
(13) A. Boughriet, J. C. Fischer, M. Wartel, and C. Bremard, Nouv.
will be met as C60H36. The number of regioisomers probably
J. Chim., 9, 651 (1985).
increases more than C60H36. But C60(NO2)x as a new
(14) M. D. Yan, S. X. Cai, and J. F. W. Keans, J. Org. Chem., 59,
energetic material does not matter about those regioisomers. 5951 (1994).
Propellants, Explosives, Pyrotechnics 26, 109 111 (2001) Review on the Nitration of [60]Fullerene 111
(15) H. Selig, C. Lifshitz, T. Peres, J. E. Fischer, A. R. McGhie, (23) C. C. Addison, Chem. Rev., 80, 21 (1980).
W. J. Romanov, J. P. McGauley, and A. B. Smith, J. Am. Chem. (24) A. Boughriet, M. Wartel, and J. C. Fischer, Can. J. Chem., 64, 5
Soc., 113, 5475 (1991). (1986).
(16) J. H. Holloway, E. G. Hope, R. Taylor, C. J. Langley, (25) R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai,
A. G. Avent, T. J. Dennis, J. P. Hare, H. W. Kroto, and D. R. M. N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O Brien, C. Pan,
Walton, J. Chem. Soc., Chem. Commun., 966 (1991). Z. Xiao, W. E. Billups, M. A. Cioufolini, R. H. Hauge, J. L.
(17) G. A. Olah, T. Bucsi, C. Lambert, R. Aniszfeld, N. J. Trivedi, Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley, J.
D. K. Sensharm, and G. K. S. Prakash, J. Am. Chem. Soc., 113, Phys. Chem., 94, 8634 (1990).
9385 (1991). (26) M. Buhl, W. Thiel, and U. Schneider, J. Am. Chem. Soc., 117,
(18) Y. Rubin, S. Khan, D. I. Freedberg, and C. Yeretzian, J. Am. 4623 (1995).
Chem. Soc., 115, 345 (1993). (27) B. I. Dunlap and D. W. Brenner, J. Phys. Chem., 98, 1756 (1994).
(19) P. J. Krusic, E. Wasserman, P. N. Keizer, J. P. Morton, and (28) A. V. Okotrub , L. G. Bulusheva, I. P. Asanov, A. S. Lobach, and
K. F. Perston, Nature, 254, 1183 (1991). Yu M. Shulga, J. Phys. Chem., 103, 716 (1999).
(20) C. Corvaja, M. Maggini, M. Prato, C. Scorrano, and M. Venzin, (29) N. X. Wang, J. Li, D. Zhu, and T. H. Chan, Tetrahedron Lett., 36,
J. Am. Chem. Soc., 117, 8857 (1995). 431 (1995).
(21) G. W. Wang, L. H. Shu, S. H. Wu, H. M. Wu, and X. F. Lao,
J. Chem. Soc., Chem. Commun., 1071 (1995).
(Received October 11, 1999; revised January 11, 2001;
(22) V. Anantharaj, J. Bhonsle, T. Canteenwala, and L. Y. Chiang,
J. Chem. Soc., Perkin Trans., 1, 31 (1999). Ms 1999=64) [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • kajaszek.htw.pl
  • include("menu4/2.php") ?>